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diffusion-weighted imaging coupled with tractography is 
currently the only method for in vivo mapping of human  
white-matter fascicles. tractography takes diffusion 
measurements as input and produces the connectome, a large 
collection of white-matter fascicles, as output. We introduce 
a method to evaluate the evidence supporting connectomes. 
linear fascicle evaluation (liFe) takes any connectome as 
input and predicts diffusion measurements as output, using 
the difference between the measured and predicted diffusion 
signals to quantify the prediction error. We use the prediction 
error to evaluate the evidence that supports the properties of 
the connectome, to compare tractography algorithms and to 
test hypotheses about tracts and connections.

Magnetic resonance (MR) diffusion imaging methods and trac-
tography algorithms estimate the trajectories of white-matter 
fascicles (tracts) in the human brain in vivo1–3. Because these 
measurements are obtained in vivo, they can be used to clarify 
the relationship between the tract tissue properties and behavior, 
cognition and development as well as to identify disease biomar-
kers. Experimental measurements combining behavior and 
diffusion imaging show that tissue properties of specific tracts 
are correlated with a range of cognitive abilities. The properties 
of these tracts change during development and in response to 
experience. For example, changes in tissue properties are corre-
lated with developmental progress, language, cognition, decision  
making, disease and trauma4–9.

The collection of white-matter tracts and connections is called 
the connectome10,11. Tractography algorithms use diffusion-
weighted images to derive many fascicles that comprise the can-
didate connectome. Conventional tractography generates fascicles 
one at a time; however, these algorithms do not assess how well the 
full connectome predicts the diffusion data. Thus, a key limitation 
of current practice concerns how to establish confidence in the 
connectome and specific fascicles within the connectome, consid-
ering that selecting different parameters or different algorithms 
produces substantially different candidate connectomes12–14 
(Fig. 1 and Supplementary Fig. 1). To be able to evaluate con-
nectomes derived with different methods, it is important to assess 
the strength of the evidence supporting each of these models.
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We introduce a method that refines a candidate connectome 
containing many potentially unsubstantiated fascicles to an opti-
mized connectome. Fascicles are retained in the optimized con-
nectome only if they are needed to predict the diffusion data. We 
show that the optimized connectome predicts the diffusion data 
accurately and analyze the properties of the optimized connec-
tome. Finally, we introduce methods that evaluate the strength of 
the evidence concerning specific tracts and connections.

results
deriving an optimized connectome with liFe
We developed the LiFE algorithm to evaluate how well a can-
didate connectome obtained through tractography methods fits 
the underlying white-matter diffusion data. The method solves 
a set of simultaneous linear equations (Supplementary Fig. 2 
and Online Methods) to estimate a weight for each fascicle; this 
weight describes the fascicle’s contribution toward predicting the 
diffusion data. These equations are solved by non-negative linear 
least-squares algorithms15. Only fascicles with positive weight 
are retained (Online Methods and Supplementary Fig. 2e). This 
connectome evaluation is global, as the fascicles in the optimized 
connectome all contribute to predicting the diffusion data meas-
ured in the whole white-matter volume.

The LiFE method can be applied to candidate connectomes 
created with any number of fascicles, parameter settings and trac-
tography algorithms. It identifies the subset of fascicles that are 
supported by the diffusion data.

Prediction accuracy of the optimized connectome
We evaluated the prediction accuracy of candidate and optimized 
connectomes using cross-validation (Fig. 2). To illustrate the LiFE 
methodology, we acquired and analyzed two different data sets 
from adult human brains. We obtained data set STN150 using 
150 angles and 2-mm3 spatial resolution, with a diffusion sen-
sitization value, b, of 2,000 s/mm2 (n = 1 brain, two repeats). 
Data set STN96 includes 96 diffusion directions at 1.5 mm3, with 
a b value of 2,000 s/mm2 (n = 6 brains, two repeats each). We 
also used data obtained from the Human Connectome Project 
(HCP90, utilizing 90 diffusion directions at 1.25 mm3, with a  
b value of 2,000 s/mm2). In the examples here and below, we 
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generated whole-brain candidate con-
nectomes using constrained spherical 
deconvolution (CSD)-based probabilistic 
tractography16 (using a maximum harmonic order, Lmax, of 10 
and 5 × 105 seeds). In each case, the candidate connectome con-
tains 500,000 fascicles.

We measured and predicted the diffusion modulation, i.e., 
the diffusion relative to the mean isotropic signal in each voxel 
(Fig. 2 and Supplementary Fig. 3a,b). Two independent data 
sets (repeats), D1 and D2, were collected in each brain and data 
set (STN150 and STN96) (Fig. 2a). We tracked and estimated the 
fascicle weights that best fit D1. Then we used the connectome and 
the estimated weights from D1 to predict the diffusion signal in 
D2 using the LiFE algorithm (Fig. 2b). The r.m.s. error between 
the prediction and D2, which measures prediction error, was uni-
formly distributed across the white matter (Fig. 2c).

We compared the model prediction to the test-retest reliabil-
ity of the data, which is the r.m.s. error between the two data 
sets, Drmse. The model prediction error (Mrmse) is the r.m.s. error 
between the connectome prediction and D2. We compared the 
model and test-retest reliability at each voxel using the ratio  
Rrmse = Mrmse/Drmse. When Rrmse is below 1, the model predicts 
D2 more accurately than D1 predicts D2. Indeed, more than 70% 
of the voxels had an Rrmse less than 1 (Fig. 2d and Supplementary 
Fig. 3c,d). In conclusion, the optimized connectome model  
predicted the second data set more accurately than assuming that 
the second data set equals the first.

optimized connectome fascicle properties
The candidate and optimized connectomes included more short 
(1–5 cm) than long (10 cm) fibers (Fig. 3a and Supplementary 
Fig. 4a). Histology shows17,18 that there are even more short fibers 
below 1 cm, but these are not predicted by tractography models. 
Optimizing the connectome reduced the count in long and short 
fascicles approximately equally.

The number and values of positive weights in the optimized 
connectome depends on the spatial resolution, angular resolution 
and signal-to-noise ratio (SNR) of the acquired data. The number 
of positive weights for STN96 and STN150 was about 95,000 for 
both. For all three data sets (STN150, STN96 and HCP90), the 
fascicle weight distribution was approximately symmetric on a 
log-weight axis, with a large range of assigned weights (five log-
units; Fig. 3b). Some fascicles contributed more to the predic-
tions than others, and their weights were as much as two orders 
of magnitude greater.

Axon density varies across the white matter. For example, in the 
corpus callosum the axon density varies by a factor of 1.3 (ref. 19).  
If we consider only the axons with a diameter greater than 3 µm,  
this factor can be as large as 30 (ref. 19). Yet, typical can-
didate connectomes can vary by a factor of 300 or more20  
(Fig. 3c,d and Supplementary Fig. 4b). This exceeds the 
range observed in biological material, but principled methods 

a

b

1 cmFigure � | Tract trajectory estimates and 
cortical projection zones from different 
tractography algorithms. (a) Deterministic 
tractography. Sagittal and coronal views of the 
arcuate fasciculus (purple) and corticospinal 
tract (gold) in a candidate connectome 
generated using deterministic tractography. 
The density with which the fiber projects onto 
the cortical surface is indicated by the color 
overlay. Yellow indicates highest fiber density. 
(b) Probabilistic tractography. Images as in a 
except for a candidate connectome generated 
using probabilistic tractography.
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Figure � | Measured and predicted  
diffusion data and LiFE model prediction 
accuracy. (a) Maps of measured diffusion 
modulation (diffusion data 1 and 2:  
D1 and D2, respectively, in the main text)  
in a typical coronal brain slice and for  
a single diffusion direction. (b) Map of 
predicted diffusion modulation by LiFE 
(synthetic MRI signal; equation (7)) for  
the same brain slice and diffusion  
direction as in a. Connectome generated  
with CSD-based probabilistic tractography  
with Lmax = 10 and the STN150 data set  
(n = 1 brain). (c) Distribution of LiFE model 
r.m.s. error: A representative coronal brain  
slice is shown. The color overlay shows the 
cross-validated model error (Mrmse) for the  
CSD-based probabilistic tractography with Lmax = 10 using the STN150 data set. (d) Histograms of the percentage of white-matter volume with a given 
Rrmse for the STN150 and STN96 data sets. Error bars indicate ±1 s.e.m. across brains.
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may bring the dynamic range of the fascicles into biologically  
plausible ranges20–22.

The fascicle density of the optimized connectome was close to a 
biologically plausible level (Fig. 3d). The optimized connectome 
had a smaller dynamic range because more than 50% of the fibers 
in the core of the white matter were eliminated. In contrast, the 
number of fascicles per voxel in the white matter adjacent to the 
cortex remained stable.

Naturally, any change in the power of the data—such as  
reducing the number of directions, making the sample size 
coarser or decreasing the SNR—will affect how many of the  
fascicles are supported by the measurements and thus retained 
in the optimized connectome. This is an important characteristic 
of the procedure as it allows the evaluation of the acquisition  
parameters that are needed to measure specific tracts 
(Supplementary Fig. 4c).

comparing connectome models
Using LiFE, we can compare the prediction error of optimized 
connectomes derived from different tractography methods. No 
single tractography method is optimal for all data acquisition pro-
tocols. Hence it is crucial to have a method that selects the optimal 
algorithm for particular data sets and research questions.

To illustrate this problem, we used LiFE to compare connectome 
models obtained with two tractography methods: a tensor-based 
deterministic algorithm16,23,24 and a probabilistic tractography 
approach based on CSD with Lmax = 10 (STN150, STN96 and 
HCP90; refs. 16,25,26). The resulting connectomes were very 

different (Fig. 1 and Supplementary Fig. 1). An important  
difference is that the probabilistic candidate connectome spanned 
the entire white-matter volume, whereas the deterministic  
connectome spanned about 80% of the voxels in the white- 
matter volume.

Next, we compared the voxelwise prediction error (r.m.s. error) 
from the optimal probabilistic and deterministic connectomes 
(Fig. 4a). In the voxels without any fascicles from the determin-
istic connectome, we set the diffusion signal prediction to an 
isotropic diffusion signal. For more than 70% of the voxels, the 
r.m.s. error was higher for the tensor-based deterministic algo-
rithm than for the CSD-based probabilistic algorithm (Fig. 4b), 
a result suggesting that tensor-based deterministic algorithms do 
not capitalize on all the information present in the data.

We used a bootstrap method27 to quantify the strength of the 
evidence showing that the mean r.m.s. error of the probabilistic 
connectome is smaller than the mean r.m.s. error of the deter-
ministic connectome (Fig. 4c). We resampled (with replacement) 
the distribution of r.m.s. error values and computed the mean 
r.m.s. error of each resample. The distribution of mean r.m.s. error 
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Figure � | Properties of the LiFE connectome solution. (a) Fascicle length 
distribution. The histogram of fascicle length for candidate and optimized 
connectomes (STN96 data set, probabilistic CSD, Lmax = 10) was averaged 
across 6 brains. (b) Distribution of fascicle weights. Top, weights for a 
single connectome for the STN150 data set. Center, weights averaged 
across 6 connectomes for the STN96 data set. Bottom, weights averaged 
across 7 connectomes for the HCP90 data set. These connectomes contain 
two large portions of the left and right occipital and temporal lobes 
(Online Methods). Error bars indicate ±1 s.e.m. across brains. (c) Fiber 
density maps. Maps for the candidate and optimized connectomes are 
overlaid on a coronal brain slice (STN150). (d) Candidate and optimized 
connectome fascicle density histogram. A fiber density histogram for 
the candidate and optimized connectomes (STN96) is shown. Line width 
indicates ±1 s.d. across 6 brains.
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values for the deterministic algorithm was higher than that for 
the probabilistic algorithm. We summarized the strength of the 
evidence, S, for one model versus the other by using a measure 
of distance between these two distributions. We calculated the 
distance as the difference in the two means (µ) divided by their 
pooled s.d. (σ).

S =
+

m m

s s
D P

D
2

P

–

2
 

The values µD, σD
2 and µP, σP

2 are the bootstrapped means and 
variances of the r.m.s. error for deterministic and probabilistic 
connectomes, respectively. The denominator is a conservative 
upper-bound estimate of the s.d. of the distribution of mean 
r.m.s. error pooled between deterministic and probabilistic  
connectomes28. The distance between the means, S, was on the 
order of 90 s.d. units. This strongly indicates that the mean r.m.s. 
error of the probabilistic connectome is smaller than that of the 
deterministic connectome for this data set and instrument. This 
result was consistent across data sets (Supplementary Fig. 5), 
thereby suggesting that probabilistic tracking may often be more 
accurate than deterministic tracking.

In addition to the mean r.m.s. error, we can compare the 
complete r.m.s. error distributions of the two models (Fig. 4b). 
We evaluated three additional metrics to compare r.m.s. error  
distributions—the Earth Mover’s Distance29 (E), Kullback-Leibler 
divergence and Jeffrey’s divergence (Supplementary Fig. 6)— 
and found that S and E were both informative and reliable across a 
range of experimentally plausible conditions. Hence, we use these 
two measures for statistical evidence.

the virtual lesion method: evidence for a brain connection
Next, we used the connectome model to assess the strength of the 
evidence supporting the existence of specific tracts that connect 
different brain regions.

The LiFE algorithm requires that fascicles in the optimized  
connectome contribute to the data prediction. Thus, removing 

any fascicle from the optimized connectome increases model  
prediction error. The impact on this error depends on the number 
and weights of the removed fascicles. We use the magnitude 
of the error increase to measure the strength of the evidence  
supporting the existence of any specific set of fascicles. We 
describe the analysis of fascicle removal as a ‘virtual lesion’.

Here we illustrate a virtual lesion using an example tract con-
necting the superior parietal gyrus (SPG) and human motion- 
sensitive area hMT+30,31. First, we created a candidate connectome 
using MRtrix (Lmax = 10; 1,500,000 fibers). Second, we identified 
all fascicles terminating in the SPG and hMT+. Third, we identi-
fied the path-neighborhood of the fascicle13. More specifically,  
f is the set of fascicles under test in the optimized connectome: 
for example, the SPG-hMT+ tract (Fig. 4d). The fascicle passes 
through a set of white-matter voxels, v(f  ). The collection of all 
the other fascicles that pass through at least one of the voxels 
in v( f  )  is the path-neighborhood of f. We refer to the path- 
neighborhood as F (Fig. 4d). Only the fascicles in F contribute to 
the model prediction of the diffusion signal in v(f  ).

We measured the strength of the evidence in favor of the  
existence of the fascicles, f, using a bootstrap method27. We  
calculated the r.m.s. error of the predicted diffusion signal in 
each voxel, v(f  ), using the path-neighborhood, F (unlesioned 
model). We then calculated the r.m.s. error using a model  
in which we remove the fascicles in f, F′ = F − f (lesioned  
model). Next, we compared the r.m.s. error distributions for the 
path-neighborhood v(f  ) for the lesioned and unlesioned model 
(Fig. 4e). We performed the analysis for additional subjects, 
reporting the mean values for S and E across subjects for data set 
HCP90 (Supplementary Fig. 7).

The analysis supports the existence of a white-matter tract 
between the SPG and hMT+, which has not yet been reported in 
humans. The tract is contained within the larger vertical occipital 
fasciculus32,33. This anatomical evidence in the living brain is 
consistent with functional data and post-mortem dissections in 
human34–36 and macaque30,31,37.

liFe confirmed �0 major white-matter tracts
To further validate the strength of the LiFE algorithm in evaluat-
ing connectomes, we calculated the strength of the evidence in 
favor of the existence of each of 20 long tracts that are known 
to exist in the human brain3 (n = 5 brains). The S and E values 
strongly supported the existence of all 20 major tracts (Fig. 5 and 
Supplementary Fig. 8).

Further, these 20 tracts comprise 12 left-right pairs. In each 
case, the strength of the evidence supporting the correspond-
ing left and right tract was similar and approximately consistent 
with their size. The superior lateral fasciculus (SLF) and arcuate 
are both large tracts, and there were more data supporting their  
existence. The uncinate and cingulum projecting to the hippocam-
pus are smaller, and, correspondingly, the S values for these tracts 
were smaller. The strength of evidence computed using S depends 
on the size of the tract, the characteristics of the data acquisition 
(for example, SNR) and the effect of the lesion, whereas E depends 
only on the data and the lesion effect size (Supplementary  
Figs. 6 and 8). This analysis validates LiFE by showing that it 
confirms the existence of known white-matter tracts.

Tractography is widely used to estimate the matrix of con-
nections between major brain structures. We show that, when 
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Figure 5 | Major white-matter fascicles are supported by LiFE. (a) Twenty 
major human white-matter tracts in the optimized connectome (STN96, 
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error of the optimized connectome (F), and the lesioned optimized 
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20 major tracts shown in a. Bar location matches hemisphere (left and  
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LiFE optimizes the connectome, this matrix may change 
(Supplementary Fig. 9). The illustrated case concerns an inter-
esting potential connection between primary visual cortex and 
the anterior commissure.

discussion
connectome generation
A large set of diffusion measurements and tractography  
algorithms can predict white-matter fascicles (Supplementary 
Table 1). Each algorithm generates connectomes using its own set 
of theoretical principles and heuristics, and the choice of param-
eters and algorithms has a substantial effect on the tract estimates 
(Fig. 1). LiFE can be applied to the white-matter tracts from any 
tractography algorithm and measures the strength of the evidence 
supporting the existence of specific candidate tracts.

Tractography estimates can miss a real fascicle or generate a  
fascicle that does not exist (a ‘false alarm’). The LiFE method 
reduces false alarms (Fig. 3). However, because LiFE is not 
a tractography algorithm, it does not supply missing tracts. 
Consequently, when using LiFE, investigators should begin 
with comprehensive candidate connectomes that are created to  
minimize misses but tolerate false alarms.

Global tractography
The first algorithms for tractography were deterministic, local and 
greedy38. Following this early work, probabilistic formulations 
were introduced to account for uncertainty16,25,26. Also, nonlocal 
algorithms that operate on more than a single voxel at a time were 
proposed39–43. Most tractography algorithms combine connec-
tome generation with indirect evaluation39–41.

Sherbondy et al.43,44 suggested separating connectome genera-
tion and evaluation algorithms. This separation enables inves-
tigators to measure the accuracy of predictions derived from 
different global tractography algorithms and to measure the 
accuracy of connectomes in predicting diffusion data. The prin-
ciple of separating connectome generation and evaluation was  
adopted recently45.

Global tractography algorithms can be further subdivided 
into two types: fascicle global and connectome global. Most 
global tractography algorithms are global in the sense that they  
consider constraints to path generation computed over entire  
fascicles. However, they do not constrain path generation over the 
complete connectome39–41,44. The principal goal of fascicle-global 
algorithms is to impose a degree of smoothness on the fascicle 
path. Connectome-global algorithms generate paths by constrain-
ing entire connectomes21,43. As the goal of these algorithms is 
path generation, they do not provide mechanisms for evaluating 
tractography solutions. LiFE provides a computational algorithm 
and a statistical inference framework that can evaluate virtually 
any connectome against the measured diffusion data.

connectome model validation
The most common approach to connectome validation is to 
compare tractography with another method. First, validation 
can be performed qualitatively by comparing tract estimates in 
individual ex vivo brains using both diffusion tractography and 
histology46,47. This method has various limitations. It is time 
consuming, the neural tissue is distorted and shrunk during 
the histological preparation, and the method can be applied to  

only a few cubic millimeters of white-matter volume of a single path-
way48. Second, tractography estimates from probabilistic tractog-
raphy in vivo also can be compared with blunt dissection in ex vivo  
specimens. For example, the overall shape and length of the 
optic radiation obtained with probabilistic tractography in living  
brains agree well with estimates obtained using ex vivo data44. 
Third, tractography algorithms are evaluated using artificially 
constructed physical or simulated phantoms of the fibers49–51.

Using a separate method to confirm the existence of tracts is 
helpful for establishing general confidence in tractography. But this 
approach does not assess the strength of the evidence in a specific 
data set. For example, it is valuable to know that a tract estimated 
in one subject is also found in an ex vivo brain measurement. But 
it is fundamental to measure the degree of support for the presence 
or absence of a specific tract if anatomical changes are suspected, 
for instance, upon radiation therapy or if a tumor is present. LiFE 
establishes confidence about tracts and data obtained with specific 
instruments and subjects rather than relying on related measure-
ments made with other instruments, methods and specimens.

Using LiFE, investigators can compare the accuracy of different 
connectomes and quantify the support in the data for specific 
tracts. New computational methods in quantitative MR imaging 
(MRI) will clarify the tissue properties of these tracts52. Taken 
together, the measurements and algorithms are helping us to build 
a complete model of the locations, organization and tissue proper-
ties of the human connectome.

LiFE is available as Supplementary Software and at https://
francopestilli.github.io/life/.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
STN96 and STN150 data sets: diffusion-weighted MRI  
acquisition. Magnetic resonance imaging (MRI) diffusion-
weighted data (DWI) were collected at Stanford’s Center for 
Cognitive and Neurobiological Imaging (http://cni.stanford.
edu/). We collected data in six males (age 37–39) using a 3-T 
General Electric Discovery 750 (General Electric Healthcare) 
equipped with a 32-channel head coil (Nova Medical). Data  
collection procedures were approved by the Stanford University 
Institutional Review Board. Written consent was collected from 
each participant.

Stanford 96 diffusion directions data set (STN96): for six  
subjects, we acquired two diffusion-weighted scans within a 
single scan session. Water diffusion was measured at 96 differ-
ent directions across the surface of a sphere as determined by 
the electrostatic repulsion algorithm53. In all subjects, data were 
acquired at 1.5-mm3 spatial resolution, and diffusion gradient 
strength was set to 2,000 s/mm2 (TE = 96.8 ms). We used dual-
spin echo diffusion-weighted sequences with full head coverage. 
Individual data sets were acquired with using two excitations  
(nex = 2) that were averaged in k-space. We obtained ten non- 
diffusion-weighted (b = 0) images at the beginning of each data 
set. The signal-to-noise ratio calculated over repeats of the  
nondiffusion images was greater than 20 in all data sets.

Stanford 150 diffusion directions data set (STN150): for one 
subject we acquired multiple data sets with 150 directions at  
2-mm3 spatial resolution and b values of 1,000, 2,000 and 4,000 
s/mm2 (TE = 83.1, 93.6, and 106.9 ms).

MRI images for STN96 and STN150 were corrected for spatial 
distortions due to B0 field inhomogeneity. To do so, we meas-
ured the B0 magnetic field maps. Field maps were collected in 
the same slices as the functional data using a 16-shot, gradient-
echo spiral-trajectory pulse sequence. Two volumes were succes-
sively acquired, one with TE set to 9.091 ms and the other with 
TE increased by 2.272 ms, and the phase difference between the 
volumes was used as an estimate of the magnetic field. To track 
slow drifts in the magnetic field (for example, due to gradient 
heating), we collected field maps before, after and between the 
two diffusion scans.

Subjects’ motion was corrected using a rigid-body alignment 
algorithm54. Diffusion gradients were adjusted to account for 
the rotation applied to the measurements during motion correc-
tion. The dual-spin echo sequence we used does not require eddy 
current correction because it has a relatively long delay between 
the RF excitation pulse and image acquisition. This allows for 
sufficient time for the eddy currents to dephase. Preprocessing 
algorithms are publicly available as part of the Vistasoft software 
distribution (https://github.com/vistalab/vistasoft/).

HCP90 data set. We used seven brains with DWI data down-
loaded from https://www.humanconnectome.org/data/ (ref. 55). 
Measurements from the 2,000-s/mm2 shell were extracted from 
the original data and were used for further analyses. Processing 
methods described in the following articles are applied to all HCP 
open-access preprocessed diffusion data56.

Anatomical MRI acquisition and tissue segmentation. The 
white matter–gray matter border was defined using a 0.7-mm3 
T1-weighted FSPGR image. White matter–gray matter tissue  

contrast was increased by averaging two T1 measurements acquired 
in the same scan session. An initial segmentation was performed  
using an automated procedure (FreeSurfer57) and refined manu-
ally (http://www.itksnap.org/pmwiki/pmwiki.php).

Generating whole-brain connectomes and tracts. Fiber track-
ing was performed using MRtrix16. Diffusion-weighted images 
were motion compensated and aligned to the high-resolution 
T1-weighted anatomical images. The total white-matter volume 
was identified from the cortical segmentation (see above) and 
resampled at the resolution of the diffusion data. The white-
matter volume was used as the seed region for fiber tracking. 
We tested two tracking methods implemented within MRtrix: 
(i) tensor-based deterministic tractography16,23,24, a method 
that requires fitting a tensor at each voxel and tracking using 
the principal diffusion direction identified from the tensor, and 
(ii) CSD-based probabilistic tracking16,25,26. We tested a range of 
maximum harmonic orders (Lmax = 6–12), which determines the 
maximum number of deconvolution kernels used to estimate the 
fiber orientation distribution function (fODF) at each voxel by 
the CSD model (step size: 0.2 mm; minimum radius of curvature,  
1 mm; maximum length, 200 mm; minimum length, 10 mm; 
fODF amplitude cutoff, 0.1). Results were qualitatively similar 
across the Lmax values.

For each tractography method, data set (STN150 b value of 
1,000, 2,000 or 4,000 s/mm2 with 150 directions; STN96 b value 
of 2,000 s/mm2 with 96 directions; and HCP90 b value of 2,000 
s/mm2 with 90 directions) and subject, we created one whole-brain 
connectome with 500,000 fascicles each. We repeated the analysis 
independently for each brain in each data set. Connectomes for 
the HCP90 data set were restricted to the posterior portion of each 
brain (occipital, parietal and temporal lobe as well as the cerebel-
lum). For some analyses on the STN150 data set (Supplementary 
Figs. 4 and 7), we used three connectomes restricted to the left 
occipital lobe to build independent LiFE models and repeated 
our analyses in each one of these three connectomes. This 
allowed us to test the robustness of the results within a single 
brain given by (i) the stochasticity of the placement of the seed 
within the total white-matter volume to initiate fiber tracking and  
(ii) the stochasticity introduced by the probabilistic tracking  
algorithm in generating a connectome. As reported in the Results 
and Supplementary Figures 3, 4 and 7 (see error bars), results 
were quantitatively indistinguishable across repeated tracking and 
fitting of LiFE models.

Segmentation and visualization. To identify connections 
between different brain regions (hMT+, superior parietal gyrus, 
and primary visual cortex, Supplementary Figs. 8 and 9), we did 
the following. (i) We performed a whole-brain automatic parcel-
lation using FreeSurfer58. (ii) We used the cortical regions for 
primary visual cortex (V1) and hMT+ using the cortical regions 
provided by FreeSurfer59 by transforming them to the space of the 
diffusion data. (iii) We expanded these regions to cover portions 
of the white matter adjacent to each cortical area by applying a 
three-dimensional Gaussian smoothing with a spatial kernel of  
3 mm3. (iv) We identified the fascicles in the whole-brain connec-
tome with termination (end points) inside these expanded ROIs. 
(v) The anterior commissure was identified manually in each 
subject from the high-resolution anatomical image. We selected 

http://cni.stanford.edu/
http://cni.stanford.edu/
https://github.com/vistalab/vistasoft/
https://www.humanconnectome.org/data/
http://www.itksnap.org/pmwiki/pmwiki.php
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fascicles that intersected a 5-mm-diameter sphere centered at the 
location of the anterior commissure. We segmented the major 
white-matter fascicles using AFQ3. Tracts and brain images were 
generated using Matlab Brain Anatomy (MBA) https://github.
com/francopestilli/mba/.

Predicting the diffusion signal within a voxel. A complete diffu-
sion MRI experiment measures brain volumes with and without 
diffusion sensitization. Diffusion sensitization (a combination of 
diffusion gradient strength, duration of the diffusion gradient 
and the interval between the pulses of the diffusion gradient) 
is denoted as b. We represent direction as a three-dimensional, 
unit-length, column vector.

Suppose the nondiffusion signal at a voxel is S0 and the diffu-
sion signal in the direction θ and the presence of a gradient, b, 
is S(θ,b). The diffusion signal in a particular direction using a  
specific gradient strength (b) is specified using the following 
equation60 

S b S e bA( , ) ( )q q= −
0

where A(θ) is the apparent diffusion coefficient in the direction θ.  
For a simple shape, such as an idealized cylinder that represents 
a short segment of a fascicle, f, the apparent diffusion coeffi-
cients in different directions can be summarized by the quadratic  
formula61 

A Qf ( )q q q= t
 

Equation (2) states that for a single small segment of a fascicle, 
the apparent diffusion in any direction can be computed using 
a matrix Q, whose entries depend on the local fascicle orienta-
tion. The matrix is a 3 × 3 positive-definite quadratic form, which 
means that there is an invertible matrix M such that Q = MtM.  
It follows that Q is symmetric and θtQθ > 0.

The expected diffusion in a specific voxel, v, completely filled 
by one fascicle, f, is

S b S ev
bAf( ),

( )
q

q
=

−
0

An important special case is the purely isotropic compartment, 
A0, (i.e., equal diffusion in all directions, θ). This corresponds, for 
example, to the portion of the voxel containing cerebrospinal flu-
ids, astrocytes and other tissue. A typical voxel is likely to contain 
a combination of fascicles and these isotropic tissues. We express 
the predicted diffusion signal from a single voxel as the weighted 
sum of the contributions from the fascicles in the compartment 
and the isotropic term 

S b w S e w S ev
bA

f v
f

bAf( ),
( )

q
q

= +−

∈

−∑0 0
0

0

 

We can rewrite equation (4), the diffusion in a voxel, as the 
sum of an isotropic term and the sum of orientation-dependent  
functions from each fascicle 

S b I w Ov v
f v

f f( ) ( ),q q= +
∈
∑

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

The isotropic term, Iv, is simply the mean diffusion signal in  
the voxel 

I
N

S bv v= ∑1

q q
q( ),

 

The fascicle-specific function, Of (θ), is anisotropic with zero 
mean. It describes the modulation of the diffusion signal around 
its mean. 
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The fascicle weights in a voxel are estimated by first subtracting 
Iv from the diffusion signal and then solving the linear equation 
for the values, wf, that minimize 

q
q q( , ) ,( ) ( )∑ ∑− −
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The difference between the measured diffusion signal and the 
mean diffusion signal is 

M v S b Iv v( , ) ,( )q q= −  

The predicted signal modulation based on the fascicles in v is 

P v w O
f v

f f( , ) ( )q q=
∈
∑

   

Estimating fascicle weights from the connectome. Finally, we 
solve for the fascicle weights by minimizing the error across all the 
voxels in the connectome, C. Specifically, we find wf that minimize 
the expression 

argminw f
v C

fM v P v w
∈
∑ ∑ − ≥( ( , ) ( , )) ,

q
q q 2 0

 

or, equivalently, 

argminw f
v C f v

f f fM v w O w
∈ ∈
∑ ∑ ∑−















≥( , ) ,( )
q

q q

2

0

 

Supplementary Figure 2b shows equation (11) in matrix tab-
leau. We solve for the non-negative weights using the algorithm 
defined in ref. 15.

There are many possible variants of this formulation. For exam-
ple, it is possible to impose additional minimization constraints 
(for example, sparsity or uniformity on the weights), or even to 
allow the weights to vary along the fascicle path.

In summary, the connectome model is expressed as a minimiza-
tion with respect to a large set of linear equations (equation (11)).  
The matrix representing the connectome model is sparse, 

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)
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and for our high-resolution data sets, the matrix row size is  
(Nv × Nθ): about 7,000,000 for the STN150 data set and 40,000,000 
for the STN96 data set. The matrix begins with a column size 
(Nf) of about 500,000 fascicles in the candidate connectome. The 
column dimension is reduced when the optimized connectome 
is reached. See Supplementary Figure 2 for details on the matrix 
representation of the linear model for the connectome.

Software implementation of the method is provided at 
https://francopestilli.github.io/life/ and as Supplementary 
Software. Sample data is provided at http://purl.stanford.edu/
cs392kv3054.
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